Association between GST genetic polymorphism and dose-related production of urinary benzene metabolite markers, trans, trans-muconic acid and S-phenylmercapturic acid.
نویسندگان
چکیده
The urinary benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), are widely used as benzene exposure biomarkers. The influence of the glutathione S-transferase (GST) genetic polymorphism on the excretion levels of urinary ttMA and/or SPMA has been investigated. The association between dose-related production of urinary benzene metabolites and benzene exposure level was also reported. However, the association between the dose-related productions of urinary benzene metabolites and GST genetic polymorphism was not described in the literature. The purpose of this study was to investigate the association between the GST genetic polymorphism and dose-related production of the two widely used biomarkers, urinary ttMA and SPMA. Seventy male workers in a chemical factory were measured for their benzene exposure levels and provided blood and urine specimens at the end of work-shift. The atmospheric benzene exposure levels of these workers were determined by passive samplers with gas chromatograph mass spectrometer. The urinary ttMA and SPMA levels were quantitated by an online dual-loop cleanup device with an electrospray ionization tandem mass spectrometer. The analyses of GST genotypes, including M(1), T(1), and P(1), were done using PCR. Mean (+/- SD) of benzene exposure levels in participants was 7.2 +/- 15 ppm. The ttMA and SPMA levels in the high benzene exposure group (> or =1 ppm) were higher than those in the low benzene exposure group (<1 ppm; P < 0.001). Among the GST genotypes investigated in this study, the results showed that only the GSTT1 genotype was related to the level and dose-related production of SPMA. Using SPMA for evaluating benzene exposure, the results suggest that the GSTT1 genetic polymorphism, especially in a comparison study between two populations with different GSTT1 genotype frequencies, should be considered. Additionally, the biological exposure index value of SPMA should be set based on the levels of subjects with GSTT1-deficient genotypes for protection of all subjects.
منابع مشابه
بررسی میزان مواجهه با بنزن در کارگران پمپ بنزین از طریق ارزیابی محیطی و پایش شاخص زیستی
Background and objective: Benzene is one of the main pollutants in air and one of the most extensive chemical compound used in both natural and industrial processes. Benzene exposure leads to the most dangerous adverse health effects, particularly blood cancer. The aim of this study was to evaluate the gas station workers’ exposure to benzene by measuring benzene in breathing air and urinary tr...
متن کامل[Assessment of urinary trans, trans-muconic acid as a biomarker of exposure to benzene].
OBJECTIVE To assess the use of trans, trans-muconic acid as a biomarker of occupational exposure to benzene. METHODS Trans, trans-muconic acid in urine samples of exposed (exposed group, n=36) and non-exposed (non-exposed group, n=116) workers to benzene. Urinary levels of trans, trans-muconic acid were quantified by high-performance liquid chromatography. The study sample consisted of subjec...
متن کاملPersonal exposure to different levels of benzene and its relationships to the urinary metabolites S-phenylmercapturic acid and trans,trans-muconic acid.
This report is part of an extensive study to verify the validity, specificity, and sensitivity of biomarkers of benzene at low exposures and assess their relationships with personal exposure and genetic damage. The study population was selected from benzene-exposed workers in Tianjin, China, based on historical exposure data. The recruitment of 130 exposed workers from glue-making or shoe-makin...
متن کاملUsing urinary biomarkers to elucidate dose-related patterns of human benzene metabolism.
Although the toxicity of benzene has been linked to its metabolism, the dose-related production of metabolites is not well understood in humans, particularly at low levels of exposure. We investigated unmetabolized benzene in urine (UBz) and all major urinary metabolites [phenol (PH), E,E-muconic acid (MA), hydroquinone (HQ) and catechol (CA)] as well as the minor metabolite, S-phenylmercapturi...
متن کاملMonitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms.
Benzene is a human carcinogen and an ubiquitous environmental pollutant. Identification of specific and sensitive biological markers is critical for the definition of exposure to low benzene level and the evaluation of the health risk posed by this exposure. This investigation compared urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid, and benzene (U-benzene) as biomarkers to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2008